
 One of the appealing things about R is interactive
flexibility

 enter an expression and something (sensible)
prints

 this is an implicit print()

 plot(anything) and something (sensible) plots

 this is provided by object-oriented techniques

 Why go through tedious technical programming
stuff here?

 some familiarity helps you avoid Confusion and
Delay

 what is an object?

 you might need a function to return 1, 10 or 100
assorted things

 a list can accomodate any combination of data

 including further lists

 these can be hard to understand and keep track of

 unless you have other functions that know what is
what

 some generic functions could know what to do
with several kinds

 all print does is dispatch the data to a suitable
method

 programming tools built on this idea became
popular in the 1990s

 make life easier for programmers

 C++ (on top of C)

 Java

 extensions to perl, R

 two OO systems are part of R, S3 and S4

 S3 is easy for casual use

 x <- 100

 x

 class(x) <- ’sillyvalue’

 print.sillyvalue <- function(z) {

 cat(’\n\n\n ’,z , ’... is a silly
value\n\n’)

 }

 x

 S3 is not an industrial-grade OO system

 no requirement for classes to be pre-defined

 no checking if class exists

 no checking if data makes sense

 simple-minded method dispatching

 naming convention

 in the orthodox OO religion ...

 there is a lot more formality

 objects are like companies

 you know the products and prices

 you’re not concerned with production details

 there are laws and contracts

 compare with functions

 S4 introduces some further OO formality

 good for bigger programming projects

 has pre-declared class definitions and methods

 checking of data when object created or modified

 still not fully orthodox

 compromise for interactive use

 another print example

setMethod(’print’,c(’frog’),function(x){

 cat(’\n\n\n ’,x ,’is a frog\n\n’)

 }

 m <- ’Rana esculenta’

 class(m) <- ’frog’

 m

 what’s missing from the example above is a class
definition

 unlike in S3 you are warned if class is not already
defined

 the simplest kind of definition is based on an
existing class

 setClass(Class=’frog’,
representation=’character’)

 n <- 100

 is(n) # n is numeric

 class(n) <- ’frog’ # frog is
supposed to be character!

 is(n) # it is now, has been
automagically coerced

 all of the foregoing depend on a generic function

 we won’t go into the details but it can be as simple
as

 frob <- function (x, ...){
useMethod(frob) } #S3

 Objects are basically lists

 you can make a list of all the information
available

 (model <- aov(weight ~ feed,
chickwts))

 str(model)

 is(lm)

 lm$model

 S4 objects have slots that have additional magick

 slots are defined in the using setClass

 they have a declared type

 they optionally also have validation methods

 can check any other characteristics that might be
required

 slots are addressed with @ similar to the way $ is
used for lists

 packages generally have accessor functions

 better to use these than addressing slots directly

One of the appealing things about R is interactive flexibility
 enter an expression and something (sensible) prints
 this is an implicit print()
 plot(anything) and something (sensible) plots
 this is provided by object-oriented techniques

Why go through tedious technical programming stuff here?
 some familiarity helps you avoid Confusion and Delay

what is an object?
 you might need a function to return 1, 10 or 100 assorted things
 a list can accomodate any combination of data
 including further lists
 these can be hard to understand and keep track of
 unless you have other functions that know what is what
 some generic functions could know what to do with several kinds
 all print does is dispatch the data to a suitable method

programming tools built on this idea became popular in the 1990s
 make life easier for programmers
 C++ (on top of C)
 Java
 extensions to perl, R

two OO systems are part of R, S3 and S4
 S3 is easy for casual use
 x <- 100
 x
 class(x) <- ’sillyvalue’
 print.sillyvalue <- function(z) {
 cat(’\n\n\n ’,z , ’... is a silly value\n\n’)
 }
 x

S3 is not an industrial-grade OO system
 no requirement for classes to be pre-defined
 no checking if class exists
 no checking if data makes sense
 simple-minded method dispatching
 naming convention

in the orthodox OO religion ...
 there is a lot more formality
 objects are like companies
 you know the products and prices
 you’re not concerned with production details
 there are laws and contracts
 compare with functions

S4 introduces some further OO formality
 good for bigger programming projects
 has pre-declared class definitions and methods
 checking of data when object created or modified
 still not fully orthodox
 compromise for interactive use

another print example
 setMethod(’print’,c(’frog’),function(x){
 cat(’\n\n\n ’,x ,’is a frog\n\n’)
 }
 m <- ’Rana esculenta’
 class(m) <- ’frog’

 m

what’s missing from the example above is a class definition
 unlike in S3 you are warned if class is not already defined
 the simplest kind of definition is based on an existing class
 setClass(Class=’frog’, representation=’character’)
 n <- 100
 is(n) # n is numeric
 class(n) <- ’frog’ # frog is supposed to be character!
 is(n) # it is now, has been automagically coerced

all of the foregoing depend on a generic function
 we won’t go into the details but it can be as simple as
 frob <- function (x, ...){ useMethod(frob) } #S3

Objects are basically lists
 you can make a list of all the information available
 (model <- aov(weight ~ feed, chickwts))
 str(model)
 is(lm)
 lm$model

S4 objects have slots that have additional magick
 slots are defined in the using setClass
 they have a declared type
 they optionally also have validation methods
 can check any other characteristics that might be required
 slots are addressed with @ similar to the way $ is used for lists
 packages generally have accessor functions
 better to use these than addressing slots directly

	€€€€€€€€€€One of the appealing things about R is interactive flexibility
	€€€€€€€€€€€€€€€€€€€€ enter an expression and something (sensible) prints
	€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ this is an implicit print()

	€€€€€€€€€€€€€€€€€€€€ plot(anything) and something (sensible) plots
	€€€€€€€€€€€€€€€€€€€€ this is provided by object-oriented techniques

	€€€€€€€€€€Why go through tedious technical programming stuff here?
	€€€€€€€€€€€€€€€€€€€€ some familiarity helps you avoid Confusion and Delay

	€€€€€€€€€€what is an object?
	€€€€€€€€€€€€€€€€€€€€ you might need a function to return 1, 10 or 100 assorted things
	€€€€€€€€€€€€€€€€€€€€ a list can accomodate any combination of data
	€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ including further lists

	€€€€€€€€€€€€€€€€€€€€ these can be hard to understand and keep track of
	€€€€€€€€€€€€€€€€€€€€ unless you have other functions that know what is what
	€€€€€€€€€€€€€€€€€€€€ some generic functions could know what to do with several kinds
	€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ all print does is dispatch the data to a suitable method

	€€€€€€€€€€programming tools built on this idea became popular in the 1990s
	€€€€€€€€€€€€€€€€€€€€ make life easier for programmers
	€€€€€€€€€€€€€€€€€€€€ C++ (on top of C)
	€€€€€€€€€€€€€€€€€€€€ Java
	€€€€€€€€€€€€€€€€€€€€ extensions to perl, R

	€€€€€€€€€€two OO systems are part of R, S3 and S4
	€€€€€€€€€€€€€€€€€€€€ S3 is easy for casual use
	€€€€€€€€€€€€€€€€€€€€ x <- 100
	€€€€€€€€€€€€€€€€€€€€ x
	€€€€€€€€€€€€€€€€€€€€ class(x) <- 'sillyvalue'
	€€€€€€€€€€€€€€€€€€€€ print.sillyvalue <- function(z) {
	€€€€€€€€€€€€€€€€€€€€ cat('\n\n\n ',z , '... is a silly value\n\n')
	€€€€€€€€€€€€€€€€€€€€ }
	€€€€€€€€€€€€€€€€€€€€ x

	€€€€€€€€€€S3 is not an industrial-grade OO system
	€€€€€€€€€€€€€€€€€€€€ no requirement for classes to be pre-defined
	€€€€€€€€€€€€€€€€€€€€ no checking if class exists
	€€€€€€€€€€€€€€€€€€€€ no checking if data makes sense
	€€€€€€€€€€€€€€€€€€€€ simple-minded method dispatching
	€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ naming convention

	€€€€€€€€€€in the orthodox OO religion ...
	€€€€€€€€€€€€€€€€€€€€ there is a lot more formality
	€€€€€€€€€€€€€€€€€€€€ objects are like companies
	€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ you know the products and prices
	€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ you're not concerned with production details
	€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ there are laws and contracts

	€€€€€€€€€€€€€€€€€€€€ compare with functions

	€€€€€€€€€€S4 introduces some further OO formality
	€€€€€€€€€€€€€€€€€€€€ good for bigger programming projects
	€€€€€€€€€€€€€€€€€€€€ has pre-declared class definitions and methods
	€€€€€€€€€€€€€€€€€€€€ checking of data when object created or modified
	€€€€€€€€€€€€€€€€€€€€ still not fully orthodox
	€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ compromise for interactive use

	€€€€€€€€€€another print example
	€€€€€€€€€€€€€€€€€€€€ setMethod('print',c('frog'),function(x){
	€€€€€€€€€€€€€€€€€€€€ cat('\n\n\n ',x ,'is a frog\n\n')
	€€€€€€€€€€€€€€€€€€€€ }
	€€€€€€€€€€€€€€€€€€€€ m <- 'Rana esculenta'
	€€€€€€€€€€€€€€€€€€€€ class(m) <- 'frog'
	€€€€€€€€€€€€€€€€€€€€ m

	€€€€€€€€€€what's missing from the example above is a class definition
	€€€€€€€€€€€€€€€€€€€€ unlike in S3 you are warned if class is not already defined
	€€€€€€€€€€€€€€€€€€€€ the simplest kind of definition is based on an existing class
	€€€€€€€€€€€€€€€€€€€€ setClass(Class='frog', representation='character')
	€€€€€€€€€€€€€€€€€€€€ n <- 100
	€€€€€€€€€€€€€€€€€€€€ is(n) # n is numeric
	€€€€€€€€€€€€€€€€€€€€ class(n) <- 'frog' # frog is supposed to be character!
	€€€€€€€€€€€€€€€€€€€€ is(n) # it is now, has been automagically coerced

	€€€€€€€€€€all of the foregoing depend on a generic function
	€€€€€€€€€€€€€€€€€€€€ we won't go into the details but it can be as simple as
	€€€€€€€€€€€€€€€€€€€€ frob <- function (x, ...){ useMethod(frob) } #S3

	€€€€€€€€€€Objects are basically lists
	€€€€€€€€€€€€€€€€€€€€ you can make a list of all the information available
	€€€€€€€€€€€€€€€€€€€€ (model <- aov(weight ~ feed, chickwts))
	€€€€€€€€€€€€€€€€€€€€ str(model)
	€€€€€€€€€€€€€€€€€€€€ is(lm)
	€€€€€€€€€€€€€€€€€€€€ lm$model

	€€€€€€€€€€S4 objects have slots that have additional magick
	€€€€€€€€€€€€€€€€€€€€ slots are defined in the using setClass
	€€€€€€€€€€€€€€€€€€€€ they have a declared type
	€€€€€€€€€€€€€€€€€€€€ they optionally also have validation methods
	€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ can check any other characteristics that might be required

	€€€€€€€€€€€€€€€€€€€€ slots are addressed with @ similar to the way $ is used for lists
	€€€€€€€€€€€€€€€€€€€€ packages generally have accessor functions
	€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ better to use these than addressing slots directly

