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Linear regression model
y = b0 + b1x1 + … + bkxk + e

Where
y is the dependent variable
x1 … xk are independent variables (predictors)
b0 … bk are the regression coefficients
e denotes the residuals

• The residuals are assumed to be identically and independently 
Normally distributed with mean 0.

• The coefficients are usually estimated by the “least squares” 
technique – choosing values of b0 … bk that minimise the sum of 
the squares of the residuals e.



  

Scottish hill races
Set of data on record 

times of Scottish hill 
races against 
distance and total 
height climbed.

library(MASS)

?hills

data(hills)

library(lattice)

splom(~hills)
Scatter Plot Matrix
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Formula
?formula

Specifies the model e.g.
y ~ a y is dependent var, 

a is independent var

y ~ factor( a ) dummy coded

y ~ -1 + factor( a ) no intercept

y ~ a + b + c 3 independent variables

y ~ a * b + c includes one interaction term

y ~ a * b * c includes all interactions terms

y ~ ( a + b + c )^3 same as above

y ~ ( a + b + c )^2 includes all 2-way interaction 
terms



  

Linear model
?lm

lm1=lm(time~dist,data=hills)

summary(lm1)



  

Linear model
lm1=lm(time~dist,data=hills)
summary(lm1)

Call:
lm(formula = time ~ dist)

Residuals:
    Min      1Q  Median      3Q     Max 
-35.745  -9.037  -4.201   2.849  76.170 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -4.8407     5.7562  -0.841    0.406    
dist          8.3305     0.6196  13.446 6.08e-15 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 19.96 on 33 degrees of freedom
Multiple R-squared: 0.8456,     Adjusted R-squared: 0.841 
F-statistic: 180.8 on 1 and 33 DF,  p-value: 6.084e-15 



  

Fitted points

attach(hills)
(c1=coef(lm1))

(Intercept)        dist 
  -4.840720    8.330456 

plot(dist,time)
abline(c1)
f1=fitted(lm1)
for(i in 1:35)
  lines(c(dist[i],dist[i]),
  c(time[i],f1[i]),col=“red”) 
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Standardised residuals
sr1=stdres(lm1)
truehist(sr1)
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Standardised residuals
qqnorm(sr1)
abline(0,1)
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Standardised residuals
plot(climb,sr1)
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Exercise 1
• Using the Scottish hill races dataset, model the time as a function of 

both distance and total height climbed. 
– What can you learn from looking at the fitted points and the 

standardised residuals?

• Some useful commands:
library(MASS)
?hills
data(hills)
attach(hills)
?lm
?formula
?fitted
?stdres
?truehist
?plot
?qqnorm



  

Model fit

• The linear model assumes that residuals 
are independently identically Normally 
distributed with mean 0.

• To assess whether the model fits the data, 
look at the residuals.



  

Model fit
• If the model does not fit, it may be because of:

– Outliers
– Unmodelled covariates
– Heteroscedasticity (residuals have unequal variance)
– Clustering (residuals have lower variance within subgroups)
– Autocorrelation (correlation between residuals at successive 

time points)

• All of these can be detected by looking for patterns in the 
residuals.

• In the next session we will look at some ways to find 
better fitting models.



  

Outliers
sr1=stdres(lm1)
truehist(sr1)
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Outliers
qqnorm(sr1)
abline(0,1)
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Unmodelled covariate
plot(climb,sr1)
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Heteroscedasticity
plot(f1,sr1)
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Exercise 2
Investigate the dataset “trees” in 

the MASS package. 
• How does Volume depend on 

Height and Girth? Try some 
models and examine the 
residuals to assess model fit.

• Transforming the data can 
give better fitting models, 
especially when the residuals 
are heteroscedastic. Try log 
and cube root transforms for 
Volume. Which do you think 
works better? How do you 
interpret the results?

Some useful commands:
library(MASS)

?trees
?lm
?formula
?stdres
?fitted

?boxcox



  

Reading

Venables & Ripley, “Modern Applied 
Statistics with S”, chapter 6.
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